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OBJECTIVES

• Develop a satellite-based icing detection methodology that can 
be applied operationally with results provided in a timely manner 
as part of an integrated icing product for the aviation community

• Use satellite data to provide near-real time cloud-top & base 
altitudes for aviation weather applications
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OUTLINE

• DESCRIPTION OF METHODOLOGY AND CLOUD PRODUCTS

(Minnis)

• RELATING AIRCRAFT ICING TO SATELLITE CLOUD PARAMETERS

(Smith)

• DEMONSTRATION OF PROTOTYPE PRODUCT

(Minnis)
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APPROACH
• Use cloud properties currently being derived from 

satellite data at various time and space scales and relate 
them to aircraft icing

-Developed & applied algorithms to various satellite (GOES, 
AVHRR, etc.) data for field programs for climate research

- Currently deriving global cloud and radiation parameters from EOS 
sensors for global change studies as part of the Clouds and Earth’s 
Radiant Energy System (CERES) Experiment post processing

- Applying similar algorithms to 4-km GOES data to derive cloud and 
radiation parameters for DOE ARM program over SGP,  for NASA 
CRYSTAL(FL), Icing (Midwest) running experimentally in R/T
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PIXEL-LEVEL CLOUD PROPERTIES
EFFECTIVE RADIATING TEMP Tc

EFFECTIVE HEIGHT, PRESSURE Zc, pc

TOP PRESSURE, HEIGHT pt, zt

THICKNESS h

EMISSIVITY ε

PHASE (water or ice; 1 or 2) P

WATER  DROPLET EFFECTIVE RADIUS re

OPTICAL DEPTH τ

LIQUID WATER PATH LWP

ICE EFFECTIVE DIAMETER De

ICE WATER PATH IWP 

Blue indicates utility for icing



NASA Langley Research Center / Atmospheric Sciences
FAA In-flight Icing/Ground De-icing International Conference, Chicago, IL, June 16-20, 2003

ICING

ICING CONDITIONS ARE DETERMINED BY CLOUD
• liquid water content, LWC  positive w/ intensity
• temperature, T(z) negative w/ intensity
• droplet size distribution, N(r) r positive w/ intensity

SATELLITE REMOTE SENSING CAN DETERMINE CLOUD
• optical depth, τ
• effective droplet size, re
• liquid water path, LWP
• cloud top temperature, Tc
• thickness, h

IN CERTAIN CIRCUMSTANCES
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CLOUD PRODUCTS VS. ICING PARAMETERS

• LWP = LWC * h

• re = f[N(r)]

• Tc & h can yield depth of freezing layer

• zt is top of icing layer

• ceiling = zt - h

IN MANY CASES, SATELLITE REMOTE SENSING
SHOULD PROVIDE ICING INFORMATION
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DATA
- GOES-8 IMAGER (4KM RESOLUTION)    75° W

Visible    (0.63 µm; ch.1) 
Solar Infrared (3.9 µm; ch.2)
IR Window (10.8 µm; ch.4)
Split Window (12.0 µm; ch.5) (G-12: 13.3 µm)

Visible Channel Calibrated Following Minnis et al. 2002

- Rapid Update Cycle (RUC) 20 km x 20 km hourly analyses

- surface air temperature => skin temperature
- temperature & moisture profiles => absorption correction, heights

- CERES clear-sky albedo, surface emissivity (10', 1°)

clear-sky reflectance, brightness temperature => cloud detection/retrieval

- Theoretical cloud reflectance & emittance models

describes angular variation for range of re and τ => cloud detection/retrieval
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METHODOLOGY FOR EACH IMAGE TIME
Clear-sky 

albedo
map

GOES
Radiance
Pixel Tile

RUC
Analysis

Surface 
emissivity

map

Surface type
map

Compute clear 
temperatures

Clear values
update

VISST/SIRS
Retrieve cloud

properties

No

clear
data

Compute clear
reflectance

Mask:
cloudy?
or clear

cloudy
pixels

Compute atmos
corrections

Process each image as 
a sequence of pixel 

groups (tiles)

lat, lon
time

GOES
clear/cloud
Pixel Tile
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CLOUD MASK
• To detect clouds, the  radiances for cloud-free (clear) scene must be known

• Determine clear-sky albedos and surface emissivities after initial processing of
data 

- start with CERES values and update

• Use RUC surface temperatures & profiles to estimate clear-sky brightness 
temperatures

• Must account for angular dependence: bidirectional reflectance models to 
estimate clear-sky reflectance for each pixel

• Estimate thresholds based on uncertainties in models & spatial/temporal 
variability of the clear radiances
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CLEAR-SKY RADIANCE 
CHARACTERIZATION

• Predict radiance a given satellite sensor would measure for each 
channel if no clouds are present

• Estimate uncertainty based on spatial & temporal variability & 
angular model errors

• Develop set of spectral thresholds for each channel 

- Solar, uses reflectance, ρ

- IR, use temperature, T 

brightness temperature difference, BTD = Tλ1 -Tλ2

typically, BTD(3.7-11) or BTD(11-12)
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CLEAR-SKY REFLECTANCE, SOLAR

• Estimate overhead-sun albedo, αo = α(µo = 1)

derived empirically with initial runs usingCERES VIRS data,
then updated for each month using GOES

• Estimate albedo at given local time, α(µo) = αo δo(µo)

directional reflectance model δo(µo) derived for each IGBP type using VIRS 

• Estimate reflectance for given viewing angles, ρ(µo, µ, φ) = α(µo) χ(µo, µ, φ)

bidirectional reflectance (BRDF) model χ selected for each surface type 

from Kriebel (1978), Minnis & Harrison (1984), Suttles et al. (1988)

• Add uncertainty to set reflectance threshold, ρ�(µo, µ, φ) = ρ + ∆ρ(µo, µ, φ)
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PREDICTED CLEAR-SKY & OBSERVED VIS REFLECTANCE & CLOUD MASK
1700 UTC,12/21/00
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CLEAR-SKY TEMPERATURE, INFRARED

• Estimate surface emissivity, εs(x,y)

derived empirically with using ISCCP AVHRR DX, VIRS, then Terra MODIS; 
water & snow theoretical models

• Estimate radiance leaving the surface, Ls = εsB(Tskin) + (1-εs)Lad

Lad = downwelling atmo radiation, Tskin = skin temperature from model / obs

• Estimate TOA brightness temperature, B(Tcs) = (1-εa)Ls + εa Lau

Lau = upwelling atmo  radiation, εa = effective emissivity of atmo

layer absorption emission computed using T/RH profile, correlated k-dist

• Add uncertainty to set T or BTD thresholds, ��(µ) = Tcs(µ) + ∆�(µ)

- reflected solar component included in 3.7-4.0 µm estimate
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PREDICTED CLEAR-SKY  & OBSERVED IR TEMPERATURE
1700 UTC,12/21/00
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PREDICTED CLEAR-SKY  & OBSERVED BTD (3.7 - 11)
1700 UTC,12/21/00
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STANDARD DAYTIME MASK ALGORITHM
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CERES CLOUD MASK 1700 
UTC,12/21/00
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STANDARD NIGHTTIME MASK ALGORITHM
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CERES CLOUD MASK & BTD(3.7 - 11) REFLECTANCE 0400 UTC,12/01/00
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DAYTIME CLOUD RETRIEVALS

•VISST (Visible, infrared, solar-infrared, split-window 
technique) 

- physically based method using 0.65, 3.7, 11, & 12 µm 
- for cloudy pixels, match radiances to model values

• Yields more accurate cloud temperatures than simpler 
methods

- adjusts temperature (altitude) of thin clouds

• Provides basis for determining phase

- in most cases, ice & water models are distinct
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Daytime Cloud Property Retrievals

• Derive cloud properties by matching observed radiances to model calculations 
for water droplets (2 < re < 32 µm) and ice crystals (6 < De < 135 µm)  
through reflectance and emittance parameterizations

• 3.9 µm (GOES Channel 2) used for particle size retrieval

• Particle phase determined by:
– (1) Best available model solution (2) T10.8 - T12.0 Difference
– (3) Visible/IR Layer Retrieval (4) Retrieved Cloud Temperature

Cloud Tau, phase, re (De), LWP (IWP), Zcld , Tcld
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Cloud properties 
from GOES-8

1815 UTC

March 3, 2000
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Cloud mask & optical 
depths from GOES-8

1815 UTC

March 3, 2000
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Cloud droplet radius & 
LWP from GOES-8

1815 UTC

March 3, 2000
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Cloud-top temperature  
& height from GOES-8

1815 UTC

March 3, 2000
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ARM-Sponsored Comparisons (March 2000)
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